提示:点击"电力系统自动化"↑关注本刊微信
原文发表在《电力系统自动化》2018年第42卷第7期“电力系统柔性一次设备关键技术”专刊,欢迎品读。
本文引文信息
鲁晓军, 向往, 林卫星, 等. 混合型模块化多电平换流器解析建模与功率运行区间分析 [J]. 电力系统自动化, 2018, 42(7): 76-84. DOI: 10.7500/ AEPS20170906004.
LU Xiaojun, XIANG Wang, LIN Weixing, et al. Analysis on analytical Modeling and Power Operating Zone of Hybrid Modular Multilevel Converter [J]. Automation of Electric Power Systems, 2018, 42(7): 76-84. DOI: 10.7500/ AEPS20170906004.
混合型模块化多电平换流器解析建模与功率运行区间分析
DOI: 10.7500/AEPS20170906004
鲁晓军,向往,林卫星,文劲宇
基于模块化多电平换流器(MMC)的架空线高压柔性直流输电是未来高压直流输电的发展方向之一。由半桥子模块(HBSM)构成的半桥型MMC不具备直流故障处理能力,在直流输电发生故障时需依靠昂贵的高压大容量直流断路器隔离故障。由半桥子模块和全桥子模块构成的混合型MMC具备交直流解耦控制能力,能够不闭锁穿越直流故障,并且具备持续运行能力,在架空线柔性直流输电领域具有应用前景。
目前已有文献大多针对混合型MMC的拓扑单元设计和直流故障穿越控制等方面,鲜有文献设计混合型MMC的解析建模与运行区间分析。混合型MMC的拓扑构成和控制性能与半桥型MMC有较大不同,无法将半桥型MMC的解析模型直接应用于混合型MMC。为定量分析混合型MMC的运行特性,本文基于混合型MMC的基本控制框架和半桥型MMC的动态相量建模思想,提出了混合型MMC的动态解析模型和稳态解析模型。
围绕混合型MMC的解析建模问题,推导了考虑混合型MMC内部电气动态和调制信号的动态以及稳态解析模型。其中,动态解析模型可方便地与换流器控制系统、直流网络和交流系统的状态空间模型对接进而得到整体的状态空间模型及小信号模型。稳态解析模型实现了混合型MMC在任意给定工作点下的完全解析求解,如子模块总电容电压、桥臂电流、调制信号等电气量和控制量的稳态值,为混合型MMC参数设计及运行特性分析提供了理论工具。
1)混合型MMC动态解析模型
如图1所示,混合型MMC的基本控制包括交流电流控制、二倍频环流抑制控制和直流电流控制三个控制环路,对应地会产生基频、二倍频和直流调制信号。而半桥型MMC的调制信号仅包含基频和二倍频变量成分。假设混合型MMC与半桥型MMC各电气量所含的主导频率成分相同,二者的运行特性差异主要体现在调制信号和控制策略不同。根据旋转坐标系下动态相量建模思想,只需将半桥型MMC的动态解析模型中的调制信号表达式替换为混合型MMC的调制信号表达式,即可得到混合型MMC的动态解析模型。
模型的状态变量包括子模块总电容电压的二倍频、基频和直流分量以及桥臂环流的二倍频和直流分量在旋转坐标系下的坐标轴分量,因此模型的阶数为8阶。输入量为交流电流和直流电压。由于该状态空间模型的矩阵在稳态时为常数,因此模型可以直接线性化得到小信号模型。矩阵中各元素的稳态值则需要通过下一节介绍的稳态解析模型求解。
图1 混合型MMC的基本控制框图
2)混合型MMC的稳态解析模型
将动态解析模型中的导数项置零,即可得到混合型MMC的稳态解析模型,一共包含8个非线性代数方程,而未知量包括电气量与调制信号等一共10个。因此还需要根据已知条件构造2个等式约束条件,才能求解全部未知变量。
若已知条件为交流电流,则可根据混合型MMC交流侧等效电路首先求得桥臂內电势,进而根据旋转坐标系下桥臂内电势与子模块总电容电压和调制信号的计算式得到2个等式约束条件。当已知条件为其他条件时,可以类似地寻找和构造出2个等式约束条件,进而联立稳态解析模型,求解得到模型的全部未知变量。
3)混合型MMC功率运行区间分析
换流站在运行中需要满足电气量和控制量的各项约束条件,利用混合型MMC稳态模型解析地计算换流器在不同直流电压和功率运行点的各电气量和控制量的稳态值,将工程中考虑的各项约束条件转化为相应电气量与控制量的数学表达式,即可得到可行功率运行区间,并可定量分析各项约束条件及换流站参数对运行区间的影响。
半桥型MMC的常见运行约束条件包括交流调制比、桥臂电流、子模块电容电压波动、交流电流和直流电流等约束。对于混合型MMC而言,除了前述约束条件,由于混合型MMC可运行于低直流电压下,此时桥臂电流的直流偏置较大,因此还需要考虑桥臂子模块的均压约束,即当桥臂有半桥子模块投入时,桥臂电流在一个周期内需要包含正、负分量以使得半桥子模块电容能够充放电,避免单向的桥臂电流使得投入的半桥子模块电容一直处于充电或放电状态,无法实现子模块的电容电压平衡。当桥臂输出电压大于全桥子模块能够产生的最大电压时,此时需要半桥子模块投入,桥臂电流应满足双向要求,即最大值大于0并且最小值小于0。
计算混合型MMC的可行运行区间流程图如图2所示。首先选定直流电压水平,选取某一运行点(图中给出的直流电流+无功功率的形式)。根据稳态解析模型求解全部未知变量,判断该运行点是否满足全部约束条件,记录或舍弃该运行点。根据预设值的扫描步长,计算、核查下一个运行点。最终可以得到混合型MMC可行功率运行点的集合。
图2 计算功率运行区间流程图
4)直流电压对功率运行区间影响分析
不同直流电压水平下换流站的可行功率运行区间及各约束条件形成的边界如图3所示。通过定量计算发现,当直流电压大于换流器阀侧交流相电压幅值时,桥臂电流自然满足双向条件,不再受子模块均压约束影响。
图3 不同直流电压水平下功率运行区间
5)换流器参数对功率运行区间影响分析
桥臂电抗器、子模块电容和全桥子模块比例对功率运行区间的影响如图4所示。不同参数设置情况下功率运行区间的边界在图中加粗显示。可以看到,由于低直流电压下子模块均压约束起主导作用,因此适当提高全桥子模块比例可明显增大功率运行范围,但是其也存在饱和点(本文算例中为61%)。
图4 换流器参数对功率运行区间影响
本文推导了混合型MMC的动态及稳态解析模型,提出了混合型MMC可行功率运行区间的计算方法,并分析了参数对功率运行区间的影响。得到的结论有:
1)本文所提出的动态解析模型可以方便地与外部系统状态空间模型接口,从而构建基于混合型MMC的柔性直流电网整体状态空间模型和小信号模型。
2)本文所提出的稳态解析模型提供了定量分析混合型MMC运行特性的理论工具。
3)混合型MMC在低直流电压下的运行区间并不对称,发出无功功率的可行性比吸收无功功率的可行性更高,这主要受子模块均压约束影响。
4)提高全桥子模块比例是扩大混合型MMC在低直流电压下的可行功率运行区间的有效方法,但是扩大效应存在饱和点。
《电力系统自动化》2018年第7期目次
【观点】哈尔滨工业大学 徐殿国等:电力系统柔性一次设备及其关键技术—应用与展望
鲁晓军,华中科技大学电气与电子工程学院博士研究生,主要研究方向为柔性直流换流器建模和直流电网稳定性分析等。
向往,博士,华中科技大学电气与电子工程学院博士后,入选“博士后创新人才支持计划”。以第一作者/通讯作者发表SCI/Ei论文25篇,其中SCI论文9篇。目前为SGO课题组直流输电研究团队负责人之一。主要研究方向为柔性直流输电技术、直流电网、交直流电网运行与控制等。
林卫星,博士,特变电工新疆新能源公司HVDC产品线总监。已发表70多篇SCI/Ei论文。研究方向为直流-直流自耦变压器、直流-直流变换器、直流输电、直流电网、模块化多电平换流器、风力发电等。
文劲宇,博士,华中科技大学电气与电子工程学院院长,,中国电力教育大学院(校)长联席会主席,中国电机工程学会咨询工作委员会委员,湖北省电机工程学会副理事长。2013年主持完成了国家自然科学基金电工学科第一个与储能相关的重点项目,2017年主持国家自然科学基金智能电网联合基金重点支持项目。长期致力于采用储能、直流电网等新技术解决大规模可再生能源并网的问题,积极开拓含新能源的电力系统规划与运行方向。先后参与并获国家科技进步一等奖1次、二等奖1次,省部级一等奖2次、二等奖4次;发表论文300多篇,其中ESI高被引论文2篇,入选F5000论文5篇,获得国家发明专利21项,美国专利2项。
华中科技大学电气与电子工程学院SGO(思构)课题组(即“智能电网运行与控制”课题组)是中国科学院院士、IEEE Fellow程时杰教授1988年留学回国后创建的,经过近30年的发展,已成为在国内学术界和工业界具有较大影响力、并具有一定国际影响力的高水平课题组,为国家培养了300多名博士后、博士和硕士等高级专门人才,以及10多名外国留学生。研究团队由一批充满活力、拥有海内外科研背景的中青年专家、博士后、博士硕士研究生组成。近年来课题组发展迅猛,现已有80余名各类研究人员,、副教授2名、博士后6名。课题组先后获得国家科技进步一等奖1项,二等奖3项,国家级教学成果二等奖1项,省部级自然科学一等奖1项、科技进步一等奖2项,其他奖励多项。在国内外学术期刊和国际会议上发表论文500多篇,出版专著2部、译著1部,获得专利和软件版权20多项。目前课题组主要有大电网大机组安全稳定控制、储能与新能源并网、直流输电和直流电网三个特色研究方向。
郑重声明:根据国家版权局相关规定,纸媒、网站、微博、微信公众号转载、摘编本微信作品,需包含本微信名称、二维码等关键信息,并在文首注明《电力系统自动化》原创。个人请按本微信原文转发、分享。
点击左下方“阅读原文”查看原文
相关气象分析